Course Type	Course Code	Name of Course	L	T	P	Credit
DSC2	NESC10.3	Air Pollution	3	0	0	3

Course Objective

The objective of the course is to comprehend the essential concepts of Air pollution

Learning Outcomes

The students should be able to:

- Explain basic principles on various aspects of atmospheric chemistry
- Identify the major sources, effects and monitoring of air pollutants.
- Understand the key transformations and meteorological influence on air
- Relate and analyse the pollution regulation on its scientific basis

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Fundamentals of air pollution: Composition and physics of atmosphere, Stationary and mobile sources; combustion process, fugitive emission; primary and secondary pollutants; POPs, Effects of air pollution on human being, animals, plants; Air pollution episodes – causes and consequences; indoor air quality	10	Understanding the role of air chemistry and effect on human beings, animals and plants.
2	Atmospheric meteorology: Wind profiles, Global circulation, determination of atmospheric stability and mixing height using temperature gradient and effect of topography on atmospheric turbulence, inversions, mixing heights, plume behavior, ventilation co-efficient, theory and application of acoustic sounding (SODAR) technique	11	To understand the atmospheric metrology
3	Air quality monitoring: Air quality sampling network design; analysis and interpretation of data. Air pollution standards and indices, emission factor, emission inventory and emission standards, Prediction of effective stack height- plume rise concept and algorithm, e.g., Holland's equation, Briggs equation, etc.	11	To understand monitoring and analysis of air pollutants
4	Dispersion of air pollutants and modelling: Box model and Gaussian model with derivation and numerical with respect to point, line and area sources, Features and application of regulatory models, e.g., screening model, FDM, ISCST-3, Caline-4 and AERMOD models	10	To Understand the dispersion of air pollutant and prediction through various pollutants

Text Books:

- 1.Boubel, R. W., Vallero, D., Fox, D. L., Turner, B., & Stern, A. C. Fundamentals of air pollution 4th edition Elsevier, 2008
- 2. Arthur C. Stern Fundamentals of air pollution 2nd edition, Elsevier, 1984
- 3. CS Rao, Environmental Pollution Control Engineering- Wiley Eastern Ltd., New Delhi, Latest Edition

Reference Books

- 1. De Nevers, N., Air Pollution Control Engineering, 3rd edition Waveland Press Inc 2016.
- 2. Peterson, A.P.G., Handbook of Noise Measurement General Radio Inc 1980.